These are quick first looks and trend and threats

Written by the security and AV professionals from team K7, meant for the general audience
These are usually articles that go into internals of a virus or deal with security issues
Senior managers speak on areas of interest to them, inside and outside the industry

Archive for the ‘Internet’ Category

“I’m not a robot”, Google to reCAPTCHA the Flag

Friday, December 12th, 2014

Over the years, online users have had to identify obscure images, typically worn-out text from old newspapers or street addresses, and type the contents into a box to prove their humanness. CAPTCHA (an acronym for “Completely Automated Public Turing test to tell Computers and Humans Apart”), as this process is called, helped prevent robots gain illegal access to websites, in order to propagate spam (unsolicited messages), for example.

However, these days advanced Artificial Intelligence technology with image recognition can solve CAPTCHA puzzles with astonishing accuracy, a whopping 99.8% according to Google. In an attempt to beat these more advanced bots, Google has recently launched a new API (Application Program Interface) called CAPTCHA reCAPTCHA.

With CAPTCHA reCAPTCHA , users are now directly asked to check a box as shown above. If this step is still insufficient to confirm the user’s humanness, a CAPTCHA is thrown. This CAPTCHA asks the users to match a given image with a set of images, usually animals or birds. Though this approach appears simple, Google claims that advanced risk analysis runs on the backend which monitors the user’s interaction with the CAPTCHA till the very end. This is a welcome change, especially for mobile users who face mild inconvenience in resolving the distorted images.

We hope CAPTCHA reCAPTCHA will be more effective in the fight against the bots created by cyber criminals.

Images courtesy of:

Archana, Content Writer

If you wish to subscribe to our blog, please add the URL provided below to your blog reader:

SOCK! BASH!! SLAP!! PINCH! Battling Vulnerability Fatigue!

Wednesday, October 15th, 2014

Whilst the ghost of Shellshock still haunts everybody two diametrically opposite vulnerabilities have made the headlines over the past 24 hours or thereabouts:

  1. CVE-2014-4114, a remote code execution vulnerability in the Microsoft OS’s rendering of certain OLE objects, actively exploited in the wild, allegedly by Russian threat actors
  2. CVE-2014-3566, effectively a data leak vulnerability in SSL 3.0 for which a PoC attack to steal secure session cookies has been described by the discoverers of the vulnerability at Google

Let’s discuss CVE-2014-4114 first since its impact is more severe given the remote code execution aspect and the evidence of malicious exploitation in the wild. The good news is that Microsoft has issued the patch for this vulnerability as of yesterday. As members of the Microsoft Active Protections Program (MAPP), we at K7 have also received more information about how the vulnerability can be exploited. We have already secured protection against known bad exploit files, and a heuristic fix is ready, but as an additional paranoid step, if you have the K7 product with firewall installed, it should be possible to add a carefully-configured firewall rule for Microsoft Office OLE rendering applications, e.g. POWERPNT.EXE, EXCEL.EXE and WINWORD.EXE, to prevent them from accessing remote network locations, thus mitigating against the silent download and rendering of malicious files.

Now then, CVE-2014-3566; the Google PoC describes a Man-in-the-Middle attack which can be used to steal a supposedly secure session cookie (but this can be any encrypted data) IF the encryption channel is SSL 3.0 based. Serious as this sounds, CVE-2014-3566 is not as potent as the bash vulnerability suite, and not as valuable as Heartbleed in the grand scheme of things. The reasons for this is that there are several mitigating factors:

  1. The communication has to be via SSL 3.0 which is an antiquated, discredited protocol long since replaced by the more secure TLS. Of course client-side browsers may be duped into believing that the server supports only SSL 3.0, and therefore switch to this protocol
  2. The attacker has to insert himself/herself between the client and the server in order to control the format of the traffic and derive the tasty data byte-by-byte
  3. The encrypted traffic itself, separated into blocks, needs to lend itself to the attack in the sense that certain content deemed interesting to the attacker must be at deterministic locations in the encrypted blocks, with a rinse and repeat function as part of the modus operandi.

At the recently-concluded Virus Bulletin 2014 conference, at which we were Shellshocked for the first time, the managing of vulnerability disclosures was extensively discussed. The above couple of vulnerability disclosures have been suitably managed, minimising the impact on the general public.

Samir Mody
Senior Manager, K7TCL

If you wish to subscribe to our blog, please add the URL provided below to your blog reader: (Part 3)

Thursday, October 9th, 2014

This is the final part of a three-part blog based on my paper for AVAR 2012 that discusses the security challenges involved in adopting two relatively new technologies, namely, Internet Protocol Version 6 and Internationalized Domain Names.

Continuing from the second part of my paper..

Social Engineering. Malware authors/Spammers/Phishers who now have a larger character set to play with are likely to register domains resembling an original site to trick users into divulging information.

Fig.10 below shows the domain information for and an IDN equivalent. Considering that the name servers, the e-mail address used to register the domain, etc, do not match, even security savvy users are likely to find it tricky to validate a URL from such IDNs before visiting it.

Fig.10: whois information on the original and the squatted IDN version

Thanks to social networking sites like Facebook, twitter etc., which enable instant sharing of information among millions of users from different backgrounds, uncommon URLs could invoke a click from curious users even if they don’t recognise the character set. Malware campaigns such as these, though short lived, could still cause enough damage globally.

Fig.11: Representative example of an attack based on socially engineered IDNs

Matching Incongruence

URL scanners could focus more on consistency or the lack thereof while dealing with phishing and malware related URLs arriving from IDNs. Language mismatch between the message body of the e-mail and the URL, or the URL and the contents of the page that the URL points to, can be deemed suspicious.

Restrictions may be imposed on visiting IDNs which don’t match a user-defined list of allowed languages. Similarly, domains created by combining visually similar characters from different character sets can also be curbed. Popularly known as a Homograph attack, most common browsers already defend users against such threats. While this protection is only limited to within the browser, it can be extended to protect e-mail, social networking and other layers as well [12].

Fig.12 below shows two domains, one created entirely using the Latin character set and the other using a combination of Latin and Cyrillic character sets. Though both domains visually appear to be similar, their Puny Code representation proves otherwise.

Fig.12: Example of two visually similar domains and their Puny Code representation [13]

Security vendors could also continue existing practices of assigning a poor reputation to domains that originate from certain high-risk countries. Such domains are usually created due to nonexistent or inadequate cyber laws in the host country, which result in malware authors abusing them. Reputation can also be assigned to registrars of IDNs based on their commitment to handling abuse reports, enforcement and verification of registrant details, ease of registering domains in bulk, etc.

A solution to address the e-mail spam problem could involve creating a white list of registered mail servers. The project, for example, works on the assumption that all computers send out spam, unless they have been previously registered on the white list [14]. In addition, since there are few mail servers catering to a significantly large user base, one could argue that e-mail could continue using IPv4, which could breath new life into the practice of IP blacklisting, at least for e-mail spam.

There is a Certainty in Uncertainty

The implications of the transition from IPv4 to IPv6, and the introduction of IDNs, are bound to be of major significance to the Internet infrastructure. These changes engender the continuous growth of the Internet by accommodating an increasing number of inter-connected devices, and variegated foreign languages.

As with any change, given the absence of a crystal ball, the move to these new technologies involves risk.Without doubt spammers, phishers and malware authors, seeking to make a quick buck, will exploit the larger attack surface provided by a vastly increased IP address space and language diversity via IDNs. We in the AV industry must take cognizance of this to determine the security implications and forge robust solutions.

As discussed in this paper, the new technologies will put pressure on current methods to counter spam, phishing and malicious URLs, especially where reputation is of prime importance. Fortunately, AV vendors have generally been able to adapt to the regular inflow of new issues, with new responses for these constantly on the anvil.

The changes about to be witnessed and the solutions proposed are likely to have security companies relying heavily on aggressive heuristics and policy-based restrictions, which could increase the number of false positives. However in corporate environments, rules can be configured to suit the risk appetite of the user in question.

Things are about to get a whole lot more difficult. However, greater vigilance, user education, and as ever, timely security industry data sharing, will help in controlling the fallout. The challenge is indeed a major one, but it is certainly not insurmountable.

[13] Information on
[14] Information on

Lokesh Kumar
K7 Threat Control Lab

If you wish to subscribe to our blog, please add the URL provided below to your blog reader:

Keep e-Phishing at Bay

Friday, September 19th, 2014

A thus far undisclosed, potentially serious security flaw has been discovered on eBay according to BBC News. Hackers were apparently successful in exploiting a weakness on eBay’s website that enabled them to multi-redirect customers, via a landing page listing iPhones, to phishing pages purporting to be those of eBay so as to steal their login credentials.

Unfortunately is it likely that several users would have been duped into surrendering their credentials, thus handing over control of their accounts to the bad guys. However, K7 users would have been protected since one of the redirector URLs was blocked by the malicious URL-blocking feature which has the overall effect of nullifying the multi-step redirector chain and protecting users.

From the user’s side it’s difficult to differentiate between legit redirection and non-legit redirection so this is best left to the site blockers in internet security products such as K7 Total Security.

In addition to that we also found directory listing and outdated plugins (such as JWplayer) on the destination website to which users were being redirected. Based on website fingerprinting, it seems websites hosting the phishing pages were almost certainly compromised by the attackers to hide their tracks.

The phishing pages have now been removed, but the domains are still live and we aren’t sure whether the core vulnerability which allowed the hackers in in the first place has been patched. In other words the webserver may be vulnerable to being hacked once more.

At the time of writing this blog we are unsure whether the cross-site scripting (XSS) flaw exists in other eBay item listings which may or may not be currently in the process of being maliciously exploited. Given the popularity of a site such as eBay, the impact of such an attack can be far reaching and varied; it is possible to leverage redirections to deliver malware via drive-by-download attacks.

The question which pops up is, “Was this just a phishing attack ??” It could have been much much more damaging.

Image courtesy of

Priyal Viroja, Vulnerability Researcher, K7TCL

If you wish to subscribe to our blog, please add the URL provided below to your blog reader:

Quick Fixes for a Safer Online Banking Experience

Monday, September 15th, 2014

Recently, a researcher colleague at K7 Threat Control Lab faced a minor glitch in accessing his online banking account at one of India’s leading banks. This led him to explore the bank’s online banking website, and he was surprised to find that not only was the main logging information portal vulnerable to simple exploitation but the authentication process also seemed weak in certain areas.

Driven by curiosity, we experimented with the entry level data validation mechanism at the online banking websites of major banks in India to discover if their online banking services are as sound as they claim them to be. Our very basic, high-level “field trials” made us realize that both the bank’s online security methods and user practices could potentially compromise the security of the bank’s online services.

We observed a few simple logic flaws in the online security process which could present loopholes for the bad guys to exploit, thus potentially bruising the bank’s online defences. Note: These logic flaws do not involve the exploit of web application vulnerabilities such as XSS, SQL, RCE, etc.

Field Value Enumeration

A customer trying to access his account is required to submit a login form to confirm his authenticity. We noticed that most of the banking sites validated each entry of the login credentials separately. This kind of independent validation could lead to ‘Field Value Enumeration’ and could subsequently lead to attackers deliberately locking out user accounts. For example, if the account policy of a bank holds that users will be locked out after five failed login attempts, an attacker could lockout an account by deliberately sending an invalid password on five attempts for a valid username. On a large scale, mass account lockouts could amount  to a ‘Denial of Service’ attack, which, if successful, would harm the reputation of the targeted banking institution.

Weak Usernames

Nearly 50% of the internet banking portals have a feeble username-strength validation process. Usernames should be unique, and ideally not be enumerable or guessable, and should never be a “Bank Client ID”, “Bank Customer ID”, “Email ID”. By setting username standards by including alphanumeric and special characters, the strength of usernames can be improved, thus making it that much more challenging for the miscreants to abuse.

Easy-to-Remember Passwords

The password is usually the critical barrier which blocks malicious intruders at entry. However, customers generally opt for passwords which are simple and easy to remember, which makes the hacker’s job a tad easier. For a sturdy password, it should be made mandatory for users to employ criteria such as uppercase, lowercase, numbers and symbols, and minimum length in their passwords as a precaution against brute-force and dictionary attacks.

Additional validation from server side

User validations are mostly coded on client side scripting languages, and are therefore easily circumvented. Additional duplicate user validation processes should ideally be implemented at the server end as well to enhance the overall user validation process.


Almost 60% of the online banking websites lack CAPTCHA implementations. Incorporating a CAPTCHA as an additional step in the user authentication process can significantly mitigate against bots and brute-force attacks.

Mail Notification for “Authentication”

Almost all online banking services have a mail delivery process for each user transaction that occurs. However, we noticed that 60% of net banking services are not sending mail notifications on unsuccessful authentication. Such a notification can be useful for users to be apprised of any unauthorized login attempt. There is unlikely to be a bombarding of the user’s inbox with notifications given that the probability of a legitimate user repeatedly typing in the wrong username and/or password is pretty low.

In conclusion a more secure online banking service can exist by employing enhanced protection strategies and by encouraging customers to adopt good security practices for usernames and passwords, thereby protecting their medium of access to these online banking websites.

Image courtesy of

Priyal Viroja & Archana Sangili, K7 Team

If you wish to subscribe to our blog, please add the URL provided below to your blog reader:

Drive by and you’ll be taken for a ride

Tuesday, September 9th, 2014

Recently we came across a commercial website catering to cycling enthusiasts that appears to be compromised.

The site’s java-scripts are all injected with a malicious iframe strategically placed between blocks of seemingly innocent HTML content. This is an age old technique meant to trick web masters who tend to look for malicious code either at the beginning or at the end of an HTML file.

On visiting the site, your browser loads all the java-scripts for the page which then redirects you to a malicious URL displayed in the screen shot above. This redirected site has just a few lines of HTML  like below:

You’ll immediately be redirected to another URL that looks to be generated using a Domain Generation Algorithm (DGA). This third level of redirection will then lead you to the actual exploit code, which on successful exploitation will drop a malicious payload named “wiupdat.exe” thus completing the cycle of the classic drive-by download attack.

On further analysis of the executable, we realized that the malware pretends to be from K7 Computing by imitating our version strings like below:

This is done to gain the user’s trust who may choose to ignore the executable thinking that it belongs to a reputed security vendor. K7 users will be protected from this malicious file, the compromised website, and the intermediary URLs.

Imitations are flattering!!!

Melhin Ahammad
K7 Threat Control Lab

If you wish to subscribe to our blog, please add the URL provided below to your blog reader: (Part 2)

Thursday, September 4th, 2014

This is the second part of a three-part blog based on my paper for AVAR 2012 that discusses the security challenges involved in adopting two relatively new technologies, namely, Internet Protocol Version 6 and Internationalized Domain Names.

Continuing from the first part of my paper…

Internet Metamorphosis

The Internet is witnessing a critical phase in the transition from an old technology to a new one, and users must understand the security implications involved. These implications could manifest themselves either during the implementation stage or after.

Tunnel Vision. IP tunnelling implementation involves encapsulating the IPv6 packets into IPv4, which is similar to creating a Virtual Private Network (VPN). Teredo, for example, is a tunnelling protocol that is installed by default on Windows Vista and Windows 7 operating systems, and provides IPv6 connectivity to a native IPv4 device [7].

Fig.4: Example of tunnelled IPv6 traffic[8]

Since the IPv6 contents are disguised inside the IPv4 packets, most security devices struggle to analyse and detect them. This in turn opens the door for attacks when these tunnels are used to transport malware.

There have been known instances of malware which enable IPv6 on a compromised host to communicate with its creator using these IP tunnels. The fact that IPv6 is enabled by default on most new operating systems makes it easier for malware to spread without being noticed. The infamous Zeus, for example, is known to support IPv6 from early 2010 onwards. This malware not only boasts of having the capability to sniff IPv6 traffic, but also supports an IPv6 Peer-to-Peer network [9].

Stack ’em Up. Dual Stack Implementation involves running both IPv4 and IPv6 in parallel, with one protocol taking preference over the other. Communication is done using the preferred protocol first, failing which it is retried using the secondary protocol.

Fig.5: Example of dual stack traffic[8]

Considering that communications happen natively either in IPv4 or in IPv6, and that both protocols co-exist in the network, until sufficient machines become IPv6 compliant, at which point IPv4 can be pensioned off, this is the preferred method of transition.

To NAT or Not. Network Address Translation (NAT) is a technique that allows multiple devices within an internal network to get online by sharing a single public IP address. This public IP address would be provided to a router at the gateway level, which in turn directs traffic to machines inside the network that use non-routable IP addresses.

On a small scale, NAT is used within a Small Office Home Office (SOHO) environment, and on a large scale, often referred to as Carrier Grade NAT (CGN), it is used by ISPs who have a limited number of IPv4 addresses.

Fig.6: Simple implementation of NAT within a SOHO environment

Apart from cutting down on the number of routable IPv4 addresses used, this technology also provided a certain degree of privacy and security to the users in the internal network. Automated port scans and information gathering attempts are deterred at the gateway, and would only succeed from inside the private network.

The gargantuan number of addresses available in IPv6 means that ISPs could technically do away with NAT, and assign a static IP address to each of its users, and yet never run out of addresses in the foreseeable future.

While this would promote end to end connectivity, which was how the Internet was originally envisaged, it could also open up the flood gates of machines which were never previously directly connected to the Internet, for now they would be vulnerable to prying eyes and groping hands.

The silver lining, however, is that since an IPv6 address can now be mapped to each user, tracking down malicious traffic & the victims of a malware incident also becomes easier. It could be a boon or a bane, depending on how one perceives it.

The Whois Who of Malware URLs , Phishing & Spam

Over the years as communication media within the Internet expanded from e-mails to other forms such as instant messaging, forums, blogging, social networking, etc., spammers followed suit with campaigns targeting these channels. These campaigns include the relatively innocuous comment spam posted in blogs/forums, Pump ’n Dump scams, attempts to sell Viagra and the like, phishers vying for sensitive user information, and malware related spam which go for the jugular.

The current volume of spam received via various communication channels is kept to a minimum thanks to a combination of techniques which involves, but is not limited to, content based and list based filtering. Given the plethora of malware URLs and spam messages disseminated everyday, most of this filtering is done using automated systems.

Fig.7 below shows a steady rise in the number of malware/phishing URLs for the first half of the year 2012

Fig.7: Number of malicious URLs crawled by K7 from January 2012 to June 2012 [10]

Content Based Filtering. This works on analyzing different characteristics of a message or a URL. For example, messages with keywords such as Viagra, Rolex, etc, somewhere in the MIME envelope could automatically be declared as spam. Similarly, a URL with words like PayPal or Facebook in the sub-domain component, combined with a recently registered domain name having a minimum validity can be deemed suspicious. However, when these keywords are represented in another language, automated content based filtering could become more challenging since we would now have to recognise the representation of a keyword in as many different character sets or Puny Code equivalents, as possible.

List Based Filtering. This aims to assign a reputation to the source of the e-mail message or the URL. For example, when a stream of messages detected as spam originates from a single IP address, that address may then be assigned a bad reputation, and would go into a blacklist. Similarly, a malicious domain or IP could go into this list.

Subsequent messages from a blacklisted IP address would automatically be labeled as spam & dropped when e-mail servers query the blacklist in real time. Likewise, URLs containing blacklisted domains or IP addresses would also be blocked as malicious.

Fig.8: One blacklisted IP address used to both send spam and host malware [10]

Once a domain/IP address gets blacklisted, the attacker shifts to a new address from which to send the spam or on which to host malware until that gets blacklisted too. They do this by either releasing and renewing their IP from their service provider, if the machine used to send the spam or host the malware is physically owned and controlled by them, or by selecting a new bot, a machine from their botnet consisting of many infected machines, from which to send the spam vicariously or to host malware on the attacker’s behalf.

On an IPv4 network the attacker has a theoretical maximum of only 4 billion addresses to cycle through. This number increases manifold within an IPv6 network. The increase in the number of domain names, due to the introduction of IDNs, is also likely to add to the blacklist woes, especially when these domains originate from an IPv6 network.

Fig.9 below shows the steady rise in the number of IDNs in the first half of the year 2012. Though currently small, the numbers are expected to increase significantly over time.

Fig.9: Number of malicious IDNs crawled by K7 from January 2012 to June 2012 [10]

Another problem with respect to blacklists is the amount of disk space occupied by these lists and the time taken to look them up. Even in the case of the relatively impoverished IPv4, assuming that all 4 billion addresses get blacklisted, a flat CSV file containing all these addresses occupies a minimum of approximately 60 Gigabytes of disk space on a Unix platform [11]. Consider further the amount of time taken in creating, maintaining, and querying such a big database in real time. Such a system would be nigh on unworkable for IPv6.

Click here to read the third part of this blog.

[7] Information on
[8] Information on
[10] Internal data

Lokesh Kumar
K7 Threat Control Lab

If you wish to subscribe to our blog, please add the URL provided below to your blog reader:

URL “Falls” Positive

Thursday, July 24th, 2014

Occasionally, we at K7 Threat Control Lab receive reports from our clients that the website they visited is being blocked by our product, claiming it as a URL false detection. In a lot of such cases, our investigations have proved that the reported URL turns out to be injected with malicious scripts.

Recently, we came across one such incident from a client regarding an Indian government site being blocked.

When analyzed, many of the pages on that website were found to be injected with a JavaScript pointing to a randomly named PHP file “QwYygBKV.php” as shown in the image below.

It is likely that the web server has been compromised by remote hackers via exploitation of some vulnerability. Here is the code which writes the script tag in HTML files:

Inspite of the random name, the above said PHP file was found in many other domains as well. Even though the web page to which the URL redirects is not alive and gives “404” error, the reported website is still detected because its pages hold the link to malicious content. Interestingly, the malicious PHP was hosted on the reported domain itself, usually the link is a redirection to another malicious website.

In this case, the administrator possibly would have removed the aforementioned PHP file. Unfortunately the infection is not cleaned completely -the web pages still carry the link to the currently unavailable malicious content.

We have informed the concerned authority of the reported website about the scenario and the recommended course of action.

One would hope that such incidents would remind administrators that when weeding websites of infections, identifying the vulnerabilities that were exploited and patching them in the first place and ensuring the integrity of the website content, are as important as removing the malware component itself.

As for K7 users, this website shall remain blocked since the loophole that the attacker exploited to host this file on the site might still be at large.

Malware Analyst, K7TCL

If you wish to subscribe to our blog, please add the URL provided below to your blog reader: (Part 1)

Tuesday, July 22nd, 2014

This is the first part of a three-part blog based on my paper for AVAR 2012 that discusses the security challenges involved in adopting two relatively new technologies, namely, Internet Protocol Version 6 and Internationalized Domain Names.

The Internet landscape is about to witness profound changes with the mass adoption of Internet Protocol Version 6 (IPv6) and Internationalised Domain Names (IDNs) in the near future. While these developments have the potential to be immensely beneficial, they also present certain challenges to the security industry which need to be addressed. These changes not only increase the attack surface for malware authors and spammers, but also render traditional methods of URL and spam blocking obsolete.

The exhaustion of the 32 bit IPv4 addresses assigned by the Internet Assigned Numbers Authority (IANA) has led to the roll-out of its 128 bit successor, IPv6. This provides a significant increase in the address pool available to assign unique IP addresses, not only to computers, but also to other Internet-connected devices. Spammers and malware authors would now have a larger address space to infect and cycle through, vitiating existing methods of detecting spam/malware URLs.

The Internet Corporation for Assigned Names and Numbers (ICANN) has expanded domain names to include non-ASCII based IDNs in a user’s native language script. While these transitions have the potential to localise the global Internet, they also provide cyber criminals (spammers/phishers/malware distributors) enhanced opportunities for exploitation, especially via social engineering.

These cyber criminals will now have the ability to redirect a user to a URL with a character set unfamiliar to him/her. Given the exponential increase in the number of URLs shared among users in our socially inter-networked world, validation of these URLs by the user prima facie now becomes much more complicated, leading to a higher compromise success rate for cyber criminals.

This paper describes the imminent major changes to the Internet networking infrastructure. It attempts to explore the security challenges involved in these milestone developments and presents potential solutions to address them.

The IPv4 Clock is Ticking

The expansion of the Internet from an esoteric academic project to a publicly accessible resource, coupled with the surge of Internet enabled devices over the last decade have contributed to the shrinking pool of available IPv4 addresses.

Fig.1 depicts the number of expected Internet enabled devices and Internet users by 2016, and how they measure up with the number of IPv4 addresses available.

Fig.1: Number of connected devices & Internet users by 2016 [1]

Conservation efforts like Network Address Translation (NAT), Classless Inter Domain Routing (CIDR), reclaiming unused addresses etc., only prolonged what was unavoidable – the depletion, and eventual exhaustion, of IPv4 addresses.

Given that ICANN, which is responsible for distributing IP addresses, gave away the last block of IPv4 addresses to the five Regional Internet Registries (RIR) in early 2011 [2], the need for change is rather pressing.

IPv6 to the Rescue

This IPv4 address crunch has been anticipated for many years, and the Internet Engineering Task Force (IETF) has been working on refining IPv6, the successor to IPv4, since the early 1990s [3]. This version of the Internet Protocol can support up to 300 undecillion addresses compared to the relatively miniscule 4 billion, a number smaller than the current world population, offered by its predecessor. Apart from this massive increase in the address space, the IETF also embedded other features to IPv6 such as support for IPSec, auto-configuration of devices, etc. [4]

These benefits, along with the availability of IPv6 from ISPs, increased end-user device support & IPv6 content, will ensure the adoption of IPv6 in the years to come, eventually making it the dominant Internet Protocol.

Fig.2 shows that, as expected, the percentage of users accessing Google over a native IPv6 connection has seen a steep rise over recent times.

Fig.2: Percentage of IPv6 users accessing Google [5]

What’s in a Domain Name

The demand for Internationalised Domain Names (IDNs) has always existed in view of the fact that 60% of the countries around the world have an official language other than English [6]. ICANN, which has domain names within its remit, has recently started allowing IDNs to satisfy this unmet demand.

The introduction of IDNs allows non-ASCII character sets like Arabic, Cyrillic, Tamil, Hindi, Chinese, etc, to be included in a domain name, potentially paving the way for a truly globalised Internet.

These IDNs are converted into ASCII using Puny Code, an encoding syntax invisible to the user, which allows for standard domain name resolutions.

Fig.3 shows a domain name in English, its nonexistent IDN equivalent in the Tamil script, and the Puny Code representation of the IDN which is used for a domain name resolution.

Fig3: Domain Name, IDN, Puny Code representation

The current demand for IDNs, combined with registrars throwing them away at a price cheaper than the regular domains, could see a surge in the number of non-English sites registering domain names in their local language.

Click here to read the second part of this blog.

[4] Information on

Images courtesy of &

Lokesh Kumar
Manager, K7 Threat Control Lab

If you wish to subscribe to our blog, please add the URL provided below to your blog reader:

Don’t Let Heartbleed Give You Nosebleed

Thursday, April 24th, 2014

Much has already been written about the infamous Heartbleed vulnerability (CVE-2014-0160), the best technical piece being on Cloudflare’s blog. Unfortunately, as always in such cases, there has also been a lot of junk spewed out causing undue panic amongst the masses. A glaring example of this was a recent article in a well-known Indian daily newspaper reprehensibly titled the “Heartbleed Virus”, at which point one ought to stop reading the article.

Heartbleed is NOT a virus! It cannot spread from machine to machine, from device to device, and it cannot directly damage your computer. That is not to say that Heartbleed is not a serious issue. It is! Rather, the gravity of the situation very much depends on who you are. If you are an average individual surfing the internet on your home computer, one could argue that Heartbleed is unlikely to affect you very much. We must perforce qualify this opinion.

Heartbleed is a vulnerability in the OpenSSL library, which is used to encrypt vast amounts of internet traffic to protect it from being snooped upon, unless the NSA is involved that is. The SSL/TLS protocols use Public Key Infrastructure (PKI) which is a proven technology for achieving Pretty Good Privacy, and hence is ubiquitous on the internet. Heartbleed, by potentially allowing the exposure of private keys on a secure webserver to a remote attacker, threatens the integrity of PKI-protected communication over a network. One could picture a heavily-reinforced steel vault, with the master key visible under the door mat outside.

It would be entities such as corporates, governments, etc, that have webservers using a vulnerable version of OpenSSL that are most at risk of potentially revealing critical confidential data, especially private keys. If you are such an entity we urge you to upgrade your version of OpenSSL immediately, and make a call on revoking and reissuing your private keys. Unfortunately attempted exploitation of Heartbleed does not necessarily leave evidence behind, and the nature of the vulnerability is such that it may be virtually impossible to tell what, if any, data has been leaked. Note, the vulnerability itself has been around for a couple of years before its discovery.

Let us now address the risk posed to the individual surfer. Although there is indeed some risk of your password and other data being leaked from some website you have logged into if the server hosting the site was being targeted, the chances are rather slim. This is because successful Heartbleed exploitation tends to reveal only ephemeral data, and on a webserver hosting a popular site with several concurrent logged-in sessions, especially one where the average individual logs out after visiting the page (assuming this frees up the session resources on the server for the next user), the probability of leaking confidential data, and that too data specifically pertaining to you, is low. Notwithstanding, to be on the safe side, you may yet wish to change your passwords if the site in question has admitted to being vulnerable earlier and has since patched the flaw. After all, based on GitHub’s advice, we in the Taggant Library Maintenance Committee (part of the IEEE Anti-Malware Support Service) did change our passwords for the following repository:

In addition client-side devices, including those running certain versions of Android (reportedly 4.1.0 and 4.1.1), could also be vulnerable to Heartbleed-based data leakage, and ought to be patched ASAP, even though exploitation on the client side is an even more remote possibility.

Images courtesy of:

Samir Mody
Senior Manager, K7TCL

If you wish to subscribe to our blog, please add the URL provided below to your blog reader: